博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
排序算法7--选择排序--堆排序
阅读量:6994 次
发布时间:2019-06-27

本文共 3295 字,大约阅读时间需要 10 分钟。

堆排序

 

1.堆排序是一种树形选择排序,在排序过程中,将待排序的记录r[1..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树的双亲结点和孩子结点之间的内在关系,在当前无序的序列中选择关键字最大(或者最小的)记录

 

     1.1、先将无序队列,列成二叉树的的样子

  1.2、建初堆。从n/2向上取整处开始调整,当前节点数字一定要大于(小于)左右两孩子,n/2--,一直向上若最后排序结果是升序就调整成大顶堆,若是降序就调整成小顶堆
  1.3、开始排序,将堆顶元素和最后一个元素互换位置,换下来的即可以依次加入有序队列,交换完成后继续进行第二步操作,调整堆
  1.4、然后再进行交换(注意:上面交换下来的已经是排好序的,不用进行调整,即忽略交换下来的数字即可)

 

由于堆排序的过程图画着不太方便,就上传了数据结构课本上的堆排序过程,这个比较过程比较详细

 

建初堆:

 

堆排序调整堆

 

2.时间复杂度

   堆排序的时间主要耗费在建初堆和调整堆时进行的反复“筛选”上

  设有n个记录的初始序列所对应的完全二叉树的深度为h,建处堆时,每个非终端节点都要自上而下进行“筛选”,由于第i层上的节点小于等于2的i-1次方,。。。。。。
  堆排序最坏的情况下时间复杂度也是O(nlog2n)
  空间复杂度O(1)

       具体时间复杂度等分析,请参考:http://www.cnblogs.com/zhangxue521/p/6748085.html

3.算法特点

  ①具有不稳定性

  ②只能用于顺序结构,不能用于链式结构
  ③建初堆时所需的比较次数比较多,因此记录数较少时不宜采用。堆排序在最坏的情况下的时间复杂度为O(nlog2n),因此当记录较多时比较高效

4.java代码

1 package 平时常用; 2  3 public class _4堆排序 { 4    public static void main(String[] args) { 5             _4堆排序 hs = new _4堆排序(); 6             int[] array = {87,45,78,32,17,65,53,9,122}; 7             System.out.print("构建大根堆:"); 8             hs.toString(hs.buildMaxHeap(array)); 9             System.out.print("\n"+"删除堆顶元素:");10             hs.toString(hs.deleteMax(array));11             System.out.print("\n"+"插入元素63:");12             hs.toString(hs.insertData(array, 63));13             System.out.print("\n"+"大根堆排序:");14             hs.toString(hs.heapSort(array));    15    }16    //输出17    public void toString(int[] array){18        for(int i:array){19            System.out.print(i+" ");20        }21    }22  //构建大根堆:将array看成完全二叉树的顺序存储结构23    private int[] buildMaxHeap(int[] array){24        //即从中间元素开始调整25        //从最后一个节点array.length-1的父节点(array.length-1-1)/2开始,直到根节点0,反复调整堆26        for(int i=(array.length-2)/2;i>=0;i--){ 27            adjustDownToUp(array, i,array.length);28        }29        return array;30    }31    32    //将元素array[k]自下往上逐步调整树形结构33    private void adjustDownToUp(int[] array,int k,int length){34        int temp = array[k];   35        for(int i=2*k+1; i
左孩子,则取右孩子节点的下标38 }39 if(temp>=array[i]){ //根节点 >=左右子女中关键字较大者,调整结束40 break;41 }else{ //根节点
<左右子女中关键字较大者42 array[k]="temp;" 将左右子结点中较大值array[i]调整到双亲节点上43 k="i;" 【关键】修改k值,以便继续向下调整44 }45 }46 被调整的结点的值放人最终位置47 }48 49 堆排序50 public int[] heapsort(int[] array){51 array="buildMaxHeap(array);" 初始建堆,array[0]为第一趟值最大的元素52 for(int i="array.length-1;i">
1;i--){ 53 int temp = array[0]; //将堆顶元素和堆低元素交换,即得到当前最大元素正确的排序位置54 array[0] = array[i];55 array[i] = temp;56 adjustDownToUp(array, 0,i); //整理,将剩余的元素整理成堆57 }58 return array;59 }60 61 //删除堆顶元素操作62 public int[] deleteMax(int[] array){63 //将堆的最后一个元素与堆顶元素交换,堆底元素值设为-9999964 array[0] = array[array.length-1];65 array[array.length-1] = -99999;66 //对此时的根节点进行向下调整67 adjustDownToUp(array, 0, array.length);68 return array;69 }70 71 //插入操作:向大根堆array中插入数据data72 public int[] insertData(int[] array, int data){73 array[array.length-1] = data; //将新节点放在堆的末端74 int k = array.length-1; //需要调整的节点75 int parent = (k-1)/2; //双亲节点76 while(parent >=0 && data>array[parent]){77 array[k] = array[parent]; //双亲节点下调78 k = parent;79 if(parent != 0){80 parent = (parent-1)/2; //继续向上比较81 }else{ //根节点已调整完毕,跳出循环82 break;83 }84 }85 array[k] = data; //将插入的结点放到正确的位置86 return array;87 }88 89 90 91 }

 

转载于:https://www.cnblogs.com/zhangxue521/p/6748199.html

你可能感兴趣的文章